

CK.	Т		VA	VA	VA	BRKR	CKT			VA	VA	VA	BRKR
NO	USAGE	QTY	PHASE A	PHASE B	PHASE C	A/PLS	NO	USAGE	QTY	PHASE A	PHASE B	PHASE C	A/PLS
_	TRANSFORMER D		5000			30/3	2	BIOSTYR		11085			50/3
3				5000		-	4				11085		-
5	•				5000	-	6	,				11085	-
7	BIOFOR UNIT-C		6928			30/3	8	BIOFOR UNIT-N		6928			30/3
9				6928		-	10				6928		-
	*				6928	-	12	†				6928	-
13	MINI POWER ZONE XFMR		1260			20/2	14	SUMP PUMP PANEL		333			20/3
15	₩			540		-	16				333		-
17	SPARE					20/3	18					333	-
19						-	20	SPARE					30/3
21	<u> </u>					-	22						-
23	SPACE						24	₩					-
	PHASE VA SUBTOTALS		13188	12468	11928			PHASE VA SUBTOTALS		18346	18346	18346	
								PHASE VA TOTALS		31534	30814	30274	
								PANELBOARD VA TOTALS				92622	
								PANELBOARD AMPS TOTALS				III.4 A	
					EQUIP	PANEL N MENT TA LOCATIO	AG: DN:	DP-I	·		NTING: TYPE: PHASE:	NEMA 3R 3 PHASE	
				VOLTAGE: MAIN BREAKER: BUS SIZE:			480 VAC 225A 225A	S	HORT CI	WIRE: RCUIT:	3 65 KAIC		

					PANELBOARD	SCF	IEDULE				
CK ⁻	Г		VA	VA	BRKR	CKT			VA	VA	BRKR
NO	USAGE	QTY	PHASE A	PHASE B	A/PLS	NO	USAGE	QTY	PHASE A	PHASE B	A/PLS
ı	RECEPTACLES		540		20/I GFCI	2	RECEPTACLES		720		20/I GFCI
3	RECEPTACLES			540	20/I GFCI	4	SPARE				20/1
5	SPARE				20/I	6	SPARE				20/I
7						8					
	PHASE VA SUBTOTALS		540	540			PHASE VA SUBTOTALS		720		
							PHASE VA TOTALS		1260	540	
							PANELBOARD VA TOTALS				1800
							PANELBOARD AMPS TOTALS				7.5 A
				·	PANEL N		PNL P		MOU	NTING:	
					EQUIPMENT TA LOCATIO	N:				TYPE: PHASE:	NEMA 3R IPHASE
					VOLTAC MAIN BREAKE BUS SIZ	R:	120/240 VAC 40A 40A (MIN)	S	HORT CI	WIRE: RCUIT:	22 KAIC

DRAWING NO. E-02	POINT LOMA WASTE WATER TREATMENT PLANT BIOLOGICAL AERATED FILTER PILOT STUDY	
SHEET NO. 20	ELECTRICAL SINGLE LINE DIAGRAM AND PANELBOARD SCHEDULES	
	CITY OF SAN DIEGO, CALIFORNIA SHEET 20 OF 22 SHEETS WATER WATER NA SEWER NA	

4) PROVIDE 3-POLE CIRCUIT BREAKER.

6 PROVIDE HOA SWITCH AND RUN LIGHT.7 PROVIDED BY EQUIPMENT MANUFACTURER.

(5) PROVIDED BY OTHERS.

WARNING

O 1/2 |

IF THIS BAR DOES
NOT MEASURE I''
THEN DRAWING IS
NOT TO SCALE.

WARNING

BROWN AND
CALDWE L

PROJECT MANAGER
BROWN AND
CALDWE L

DATE

BROWN AND
CALDWE L

BROWN

METROPOLITAN WASTEWATER DEPARTMENT

City of San Diego

										SHEET	20 UF	22 SHE	EIS		w.o. NA
DRAWING STATUS									PROJECT MANAGER			DATE			
NIO	DATE	DEA	REVISION DESCRIPTION	DDAWN	OKD	APD	PE	E.,	64.400						
NU.	DATE	KEU.	REVISION DESCRIPTION	DRAWN	CKD	APD	PE	EM	QA/QC	DESCRIPTION	BY	APPROVED	DATE	FILMED	
															DESIGN ENGINEER
															CONTROL CERTIFICATION
															188-1692
															LAMBERT COORDINATES
										CONTRACTOR DATE STARTED INSPECTOR DATE COMPLETED				00000- 20 <i>-</i> D	

EXHIBIT B PILOT TEST UNIT SPECIFICATIONS

Kruger Products 401 Harrison Oaks Blvd. Ste. 100 Cary, NC 27513

TELEPHONE 919-677-8310 FACSIMILE 919-677-0082

Technical Addendum to Proposal

USFilter/Kruger Products is pleased to provide an equipment list and technical specifications for the Biostyr® pilot test unit to be used at the referenced site.

BIOSTYR® Pilot Unit

Equipment

The Biostyr® pilot unit contains the following equipment:

One (1) 36" OD tank

Media (4.5 mm polystyrene beads)

One (1) pH meter and transmitter

One (1) dissolved oxygen meter and transmitter

Two (2) flow meters and transmitters

One (1) temperature sensor and transmitter

One (1) 1700 gallon fiberglass backwash tank

One (1) 0.75 HP/1725 RPM motor powering an agitator for backwash tank mixing

One (1) 8.6 SCFM @ 100 PSIG air compressor with 60-gallon horizontal receiver

One (1) compressed air dryer

One (1) process air flow controller

All necessary air distribution piping both for air grid and valves

Two (2) air actuated butterfly valves with actuator and solenoid

Two (2) manual butterfly valves for manual flow adjustments

Two (2) submersible non-clog centrifugal pumps

Two (2) check valves ensuring forward flow

One (1) SCADA system to control and monitor process

Technical Specifications

Dimensions

Biostyr[®] tower's assembled height is 28'6" in height by 8' wide by 8' in Length.

Biostyr[®] tower's shipping height is 18'6".

Biostyr[®] tower weighs approximately 10,000 LBS without water and 13,245 LBS loaded with water.

Control Building is 8'2" in height by 7'7" wide by 12'3" in length

Backwash drain tank is 6'6" OD fiberglass tank and weighs approximately 240 LBS without water and 15,000 LBS with water

Kruger Products 401 Harrison Oaks Blvd. Ste. 100 Cary, NC 27513

TELEPHONE 919-677-8310 FACSIMILE 919-677-0082

Capacity

Water:

Nominal Flow: 16 GPM Minimum Flow: 7 GPM

Air:

Forward flow: 2 CFM @ < 10 psi Backflush: 5 CFM @ < 10 psi

Hydraulic Connections:

Influent:

Customer supplies feed tank. Pre-wired, pre-piped pump is placed in feed tank. US Filter provides approximately 10' of flex hose for immersion in feed tank. Customer provides a standard 34" hose bib and sufficient garden hose to reach Biostyr® tower.

Effluent:

One (1) 3", 150 LB flange connection for backwash drain tank overflow One (1) 3" NPT valve to drain 1700 gallon backwash drain tank One (1) 4", 150 LB flange connection for water back flush discharge One (1) 34" nipple connection for compressed air dryer discharge

Electrical

Customer provides 480 volt, 100 Amp service.

Foundation

Customer provides level paved surface to support the Biostyr® tower, the backwash drain tank, and field office.

Protocol, Data and Visitation

Pilot study protocol must be agreed upon by both the client/engineer and US Filter prior to the start of treatment.

US Filter reserves the right to all data collected (including Biostyr[®] running conditions and laboratory samples) by the client/engineer or US Filter. All data shall be shared between the client/engineer and US Filter at the time the data is collected or available. US Filter reserves the right to use any collected data.

US Filter reserves the right to bring visitors to the pilot unit throughout the course of the study.

ONDEO Degremont, Inc.

Technical Data Sheet Biofor™ Process (2-Foot Column) Single Stage Unit

Description:

The Biofor™ Pilot Plant accurately simulates the Biofor™ process, a fixed-film aerobic biological treatment system. It operates on the principle of an upflow co-current flow of process and air. The media, Biolite, is an expanded clay material with a high specific area to provide a surface for the biomass to attach to and filter suspended solids.

Weight:

10,000 lbs. (shipping)14,000 lbs. (operating)

Overall Plan Area:

- 7'0" x 10'-0" (skid)
- 8'0" diameter x 5'8" (clearwell)

Overall Height:

- 22'-0"

Electrical Requirements:

- 480V, 3 Phase, 25 amps

Raw Water Pump: 3.0 hp, 60 Hz
Backwash Pump: 1.5 hp, 60 Hz
Scour Air Compressor: 2 hp, 60 Hz
Process Air Compressor: 1 hp, 60 Hz

Connections:

Influent: 2" half couplingEffluent: 4" male NPT

- Service Water: 0.75" female connection

ONDEO Degremont, Inc.

Technical Data Sheet Biofor™ Process (2-Foot Column) Single Stage Unit

Process Data:

- Column Area: 3.1 ft²

Parameters	Process	Carboneous Pollution Removal	Nitrification	Denitirification
Raw Water				
m/h (USGPM/ft² <u>)</u>	Minimum	4 (1.64)	4 (1.64)	
	Maximum	20 (8.20)	20 (8.20)	30 (12.26)
Process Air				
m/h	Minimum	4	4	
	Maximum	15-20	35	
Loadings	(Maximum)			
kg/m³/d	COD	15	8	
	Suspended Solids	5	3	
	Total BOD₅	6	3	
	N-NH ₄		1.6	
	NO ₃ -N			4
Filter Run				
hours	Maximum	48	48	24
Head Loss (per meter of media) height m WC (in WC)	(Maximum)	0.4 (16)	0.4 (16)	

ONDEO Degremont, Inc.

Technical Data Sheet Biofor™ Process (1-Foot Column) Single Stage Unit

Description:

The Biofor™ "DN" Pilot Plant accurately simulates the Biofor™ "denitrification" process, a fixed-film anoxic biological treatment system. It operates on the principle of an upflow flow. The media, Biolite, is an expanded clay material with a high specific area to provide a surface for the biomass to attach to and filter suspended solids.

Weight:

10,000 lbs. (shipping)12,000 lbs. (operating)

Overall Plan Area:

- 7'0" x 10'-0" (skid)

- 8'0" diameter x 5'8" (clearwell)

Overall Height:

- 22'-0"

Electrical Requirements:

- 480V, 3 Phase, 25 amps

Raw Water Pump: 3.0 hp, 60 HzBackwash Pump: 1.5 hp, 60 Hz

Connections:

Influent: 2" half couplingEffluent: 4" male NPT

- Service water: 0.75" female connection

ONDEO Degremont, Inc.

Technical Data Sheet Biofor™ "DN" Process (1-Foot Column) Single Stage Unit

Process Data:

- Column Area: 0.78 ft²

_		Carboneous Pollution		
Parameters	Process	Removal	Nitrification	Denitirification
Raw Water				
m/h (USGPM/ft²)	Minimum	4 (1.64)	4 (1.64)	
	Maximum	20 (8.20)	20 (8.20)	30 (12.26)
Process Air				
SCFM	Minimum	4	4	
	Maximum	15-20	35	
Loading	(Maximum)			
kg/m³/d	COD	15	8	
, and the second	Suspended Solids	5	3	
	Total BOD₅	6	3	
	$N-NH_4$		1.6	
	NO ₃ -N			4
Filter Run				
hours	Maximum	48	48	24
Head Loss	(Maximum)			
(per meter of media	n)	0.4 (16)	0.4 (16)	
height m WC (in Wo	C)			

